Kollaborative Ontologien und ihre Visualisierung in kooperationsunterstützenden Systemen

Michael Vonriiden

Vortrag im Rahmen des Hauptstudiums für den Diplomstudiengang Medienwissenschaften (Schwerpunkt Medieninformatik)

23. Juni 2005

Inhalt

- 1 Ontologien
 - Ontologien
 - Kollaborative Ontologien
- 2 visCOntE Visual Cooperative Ontology Environment
 - Server-Modul
 - Grafischer Webclient
- 3 Szenario
 - Abbildung von System- und Dokumenten-Strukturen
- 4 Präsentation der Anwendung, Fragen und Diskussion
 - Livepräsentation
 - Diskussion

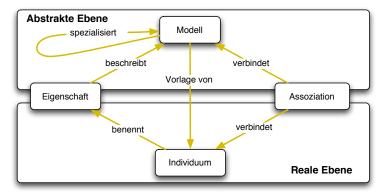
Ansätze der Diplomarbeit

Ausgangspunkt 1

- Primär: Nutzung von Ontologien in einer Mensch-Mensch Relation
- Sekundär: Maschinelle Schlussfolgerungen als nachgelagerte Option

Ausgangspunkt 2

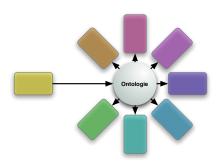
- Auflösung der Autor zu Nutzer Beziehung
- ⇒ Mechanismen für kooperative Modellierung
- ⇒ Visuelle Strukturen


Ontologien und das Semantische Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation." (Tim Berners-Lee, 2001)

Kurzge fasst

- Rechner sollen Kontexte erschliessen können
- Einbettung semantischer Strukturen in das bestehende Web
- ⇒ Transfer von Wissen und Zusammenhang in den Computer


Überblick: Ontologisches Konzept

Kurzbeschreibung

- Definition von abstrakten Modellen / Klassen in einer Taxonomie
- Definition von Eigenschaften und Assoziationen für die Modelle
- Ableitung realer Objekte bzw. Individuen auf Basis der abstrakten Modelle

Wer erstellt diese Ontologien?

Einseitige Modellierung

- Einer oder wenige Autoren für viele Nutzer
- ⇒ Einseitige Sichtweise
- ⇒ Problem der Nachvollziehbarkeit

Wer erstellt diese Ontologien?

Kollaborative Modellierung

- Nutzer f
 ür Nutzer
- ⇒ Findung einer gemeinsamen Sprache
- ⇒ Diskussion über die Zusammenhänge

Kollaborative Ontologien - Bedingungen

Konsens/Einigkeit über das strukturiert Wissen

- Teilen von Ansichten / Diskussion
- ⇒ Identifikation mit der erstellten Wissensstruktur
- ⇒ Vertrauen in die (auch maschinell) erschlossenen Kontexte

Verständlichkeit

- Nachvollziehbarkeit für Dritte und spätere Strukturierungsprozesse
- ⇒ Protokollierung der wachsenden Struktur
- ⇒ Reversibilität einzelner Ontologie-Stadien

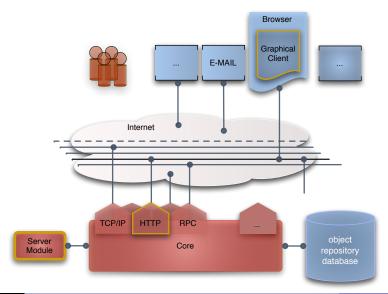
Gegenseitige Wahrnehmung

- Kenntlichmachung von Änderungen anderer Autoren
- Informationen über die Intention dieser Änderungen
- ⇒ Annotations- und Diskussionsmechanismen

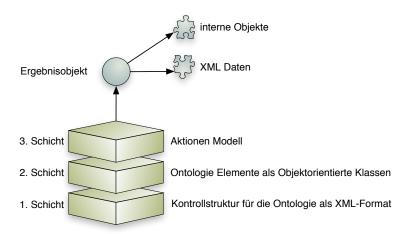
visCOntE - Visual Cooperative Ontology Environment

Beschreibung

- In ^{open}sTeam-Server integriert
- Zwei Komponenten
- ⇒ Server-Modul und grafischer Webclient


Server-Modul

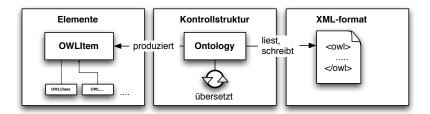
- Verantwortlich für Abfrage und Editierung der Ontologie im OWL-Format
- Versionierung der Ontologie
- Annotations-Mechanismus für Ontologie


Grafischer Webclient

- Repräsentation der Ontologie mit Hilfe von SVG
- Explorations- und Editierschnittstelle
- Mediator des kooperativen Prozesses

Positionierung in der ^{open}sTeam Architektur

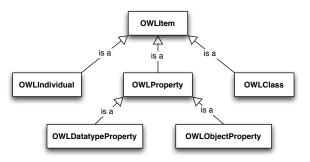
Server-Modul - Aufbau


Was ist OWL? - Web Ontology Language

```
<owl:Class rdf:about ="#Oper">
    <rdfs:label>Oper</rdfs:label>.
    <rdfs:subClassOf rdf:resource="#Musikauffuehrung"/>
  </owl:Class>.
  <owl:ObjectProperty rdf:about="#komponiertYon">.
    <rdfs:label>komponiert von</rdfs:label>.
    <rdfs:domain rdf:resource="#Musikauffuehrung" />.
    <rdfs:range rdf:resource="#Komponist" />.
10 </owl:ObjectProperty>.
11
12 < Oper rdf:about = "#LaTraviata" Urauffuehrung= "Mar, 6 1853">.
    <rdfs:label>La Traviata</rdfs:label>.
13
14
    <komponiertYon rdf:resource="#Verdi"/>
15 </Oper>
```

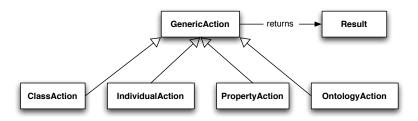
Beschreibung

- Empfehlung des W3C
- Erweiterung von RDF
- Definition von Klassen, Assoziationen, Eigenschaften und Individuen


Schicht 1: Kontrollstruktur

Verantwortlichkeit

- Übersetzung der OWL-Element in OO-Struktur und umgekehrt
- Abfragen und Editieren der Ontologie-Elemente
- Protokollierung und Versionierung der Änderungen
- Anfügen von Annotationen


Schicht 2: OWL-Elemente als Objektorientierte Struktur

Klassenstruktur

- OWLClass: Abstraktes Modell
- OWLObjectProperty: Assoziation zwischen zwei Modellen
- OWLDatatypeProperty: Attribut bzw. Eigenschaft eines Modells (z.B. URL, String)
- OWLIndividual: Abgeleitetes Objekt bzw. Individuum von Modell

Schicht 3: Aktionenmodell

Beschreibung

Ausführen unterschiedlicher Aktionen innerhalb der Ontologie

Beispiel ClassAction

- Beinhaltet Aktionen wie z.B. verschieben, löschen oder spezialisieren
- Spezielle Abfragestrukturen z.B. alle abgeleiteten Individuen einer Klasse

Schicht 3: Ergebnisobjekt

Beschreibung

- Jede Aktion liefert ein Ergebnisobjekt zurück
- Ergebnisobjekt kann Daten z.B. als XML oder Objekte zurückliefern

Integration in verschiedene Applikationskontexte

- Objekte für die Weiterverarbeitung innerhalb des Servers (z.B. Verknüpfung von Dokumenten)
- XML für externe Applikationen bzw. Repräsentation
- ⇒ z.B. SVG-Client

Grafischer Webclient

Ziele

- Webbasiertes kooperatives Strukturieren von Zusammenhängen
- Verständlichkeit des ontologischen Konzepts

Umsetzung

- Visualisierung in SVG (Scalable Vector Graphics)
- Einsatz einer Visualisierungs-Metapher
- Elementbasierter Annotations-Mechanismus
- Vereinigung von Exploration und Editierung

Visualisierung - Eine Flüssigkeitsmetapher

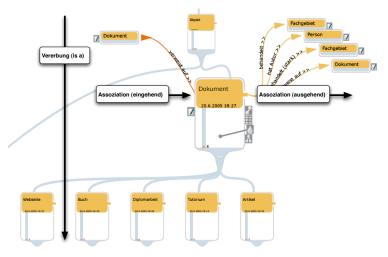


Abbildung: Modell- bzw. Klassenabhängigkeiten als Fluss von Eigenschaften

Visualisierung - Zentraler Punkt: Das Modell

Abbildung: Aufbau des Modells

Visualisierung - Reale Objekte bzw. Individuen

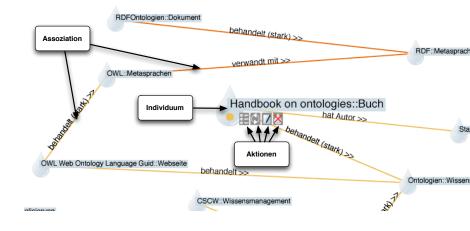


Abbildung: Individuen als Tropfen

Visualisierung - Reale Objekte bzw. Individuen

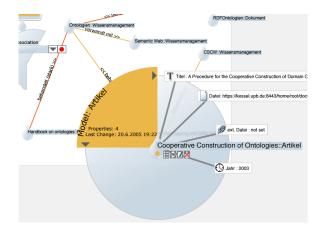
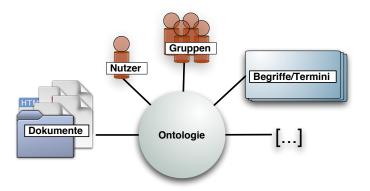


Abbildung: Tropfen mit Eigenschaften

Editierung - Gruppierung von Aktionen

Gruppierte Aktionen


- Aktionen sind gruppiert nach Elementen
- ⇒ z.B. Hierarchie bzw. Modellaktionen: Verschieben, Spezialisieren
 - Nutzer wird durch Dialog geführt

Beispiel: Anfügen eines Individuums

- Auswahl der Klasse von der abgeleitet wird
- Assoziieren anderer Individuen
- Einsetzen der Eigenschaften
- Anfügen eines Kommentars

Abbildung von System- und Dokument-Strukturen

Ziele

- Strukturierung von existierenden Dokumenten im ^{open}sTeam Server
- Verknüpfen von Dokumenten, Nutzern und Gruppen
- Verknüpfung von Begriffen zu Objekten

Strukturierung von Dokumenten mit Hilfe von Ontologien

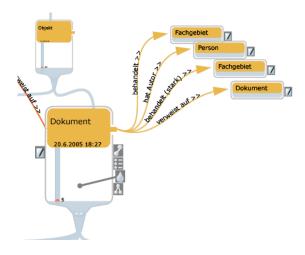


Abbildung: Beispiel eines abstrakten Schemas

Strukturierung von Dokumenten mit Hilfe von Ontologien - Individuen

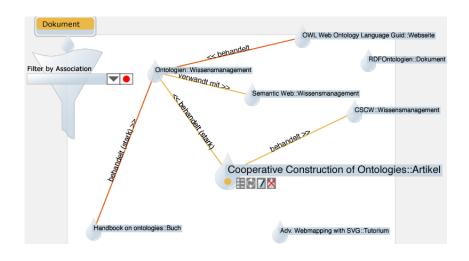


Abbildung: Ansicht der abgeleiteten Individuen

Strukturierung von Dokumenten mit Hilfe von Ontologien - Ausblick

Ontologie-Vorlagen

- Automatische Generierung einer Dokumenten-Struktur (z.B. Container)
- Abbildung der Nutzerstruktur

Mögliche maschinelle Erschließung

- Auffinden von Nutzern mit z.B. gleichen Studien- oder Forschungsschwerpunkten
- Anzeige verwandter Dokumente in der ^{open}sTeam Webschnittstelle
- Erweiterte Schlüsselwortsuche

Livepräsentation Diskussion

Nun zur Livepräsentation

Livepräsentation Diskussion

Fragen und Diskussion